A brain-controlled exoskeleton with cascaded event-related desynchronization classifiers

نویسندگان

  • Kyuhwa Lee
  • Dong Liu
  • Laetitia Perroud
  • Ricardo Chavarriaga
  • José del R. Millán
چکیده

This paper describes a brain-machine interface for the online control of a powered lower-limb exoskeleton based on electroencephalogram (EEG) signals recorded over the user’s sensorimotor cortical areas. We train a binary decoder that can distinguish two different mental states, which is applied in a cascaded manner to efficiently control the exoskeleton in three different directions: walk front, turn left and turn right. This is realized by first classifying the user’s intention to walk front or change the direction. If the user decides to change the direction, a subsequent classification is performed to decide turn left or right. The user’s mental command is conditionally executed considering the possibility of obstacle collision. All five subjects were able to successfully complete the 3-way navigation task using brain signals while mounted in the exoskeleton. We observed on average 10.2% decrease in overall task completion time compared to the baseline protocol. August 25, 2016 DRAFT

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating Classifiers to Detect Arm Movement Intention from EEG Signals

This paper presents a methodology to detect the intention to make a reaching movement with the arm in healthy subjects before the movement actually starts. This is done by measuring brain activity through electroencephalographic (EEG) signals that are registered by electrodes placed over the scalp. The preparation and performance of an arm movement generate a phenomenon called event-related des...

متن کامل

Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton

Brain-machine interface-controlled (BMI) neurofeedback training aims to modulate cortical physiology and is applied during neurorehabilitation to increase the responsiveness of the brain to subsequent physiotherapy. In a parallel line of research, robotic exoskeletons are used in goal-oriented rehabilitation exercises for patients with severe motor impairment to extend their range of motion (RO...

متن کامل

Brain-computer interface training combined with transcranial direct current stimulation in patients with chronic severe hemiparesis: Proof of concept study.

OBJECTIVE Brain-computer interface technology has been applied to stroke patients to improve their motor function. Event-related desynchronization during motor imagery, which is used as a brain-computer interface trigger, is sometimes difficult to detect in stroke patients. Anodal transcranial direct current stimulation (tDCS) is known to increase event-related desynchronization. This study inv...

متن کامل

A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control

To recognize the user's motion intention, brain-machine interfaces (BMI) usually decode movements from cortical activity to control exoskeletons and neuroprostheses for daily activities. The aim of this paper is to investigate whether self-induced variations of the electroencephalogram (EEG) can be useful as control signals for an upper-limb exoskeleton developed by us. A BMI based on event-rel...

متن کامل

Neural Markers of Performance States in an Olympic Athlete: An EEG Case Study in Air-Pistol Shooting.

This study focused on identifying the neural markers underlying optimal and suboptimal performance experiences of an elite air-pistol shooter, based on the tenets of the multi-action plan (MAP) model. According to the MAP model's assumptions, skilled athletes' cortical patterns are expected to differ among optimal/automatic (Type 1), optimal/controlled (Type 2), suboptimal/controlled (Type 3), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Robotics and Autonomous Systems

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2017